Publikationen

Enhanced Control of Single Crystalline Ag Dendritic Growth on Al Foil via Galvanic Displacement and Simultaneous Oxidation of D-Glucose

Autor(en)
Lidija D. Rafailović, Stefan M. Noisternig, Jana Bischoff, Christian Rentenberger, Daniel Bautista – Anguis, Huaping Sheng, Christoph Gammer, Jia Min Chin, Adam Elbataioui, Huanqing Zhang, Jürgen Eckert, Tomislav Lj Trišović
Abstrakt

A facile synthesis platform for the formation of stable single crystalline Ag dendrites is demonstrated. Using a porous electrospun polyacrylonitrile nanofiber network on Al foil as a template facilitates more uniform dendritic growth in the presence of D-glucose. In contrast, a denser polymer network restricts the nucleation site availability on the Al foil, highlighting the critical role of the substrate. The growth formation of silver dendrites is reduced in the solution when two simultaneous processes occur: The electroreduction of Ag+ in the D-glucose solution and galvanic displacement driven by the interaction of Ag+ with the aluminum substrate. High-resolution transmission electron microscopy analysis shows the single crystalline nature of Ag dendrites grown from the Al substrate, revealing atomic structures with closely packed layers forming highly faulted face-centered cubic and hexagonal close-packed structures. The remarkable long-term stability of Ag dendrites is primarily attributed to their single crystalline structure, with additional contributions from capping by D-gluconic acid, as confirmed by Raman analysis. This novel approach to the generation of highly stable Ag dendrites has significant potential for applications such as surface-enhanced Raman scattering, which has to date been considered to be very sensitive to environmental effects.

Organisation(en)
Dynamik Kondensierter Systeme, Physik Nanostrukturierter Materialien, Institut für Funktionelle Materialien und Katalyse
Externe Organisation(en)
Montanuniversität Leoben, Österreichische Akademie der Wissenschaften (ÖAW), Polymer Competence Center Leoben GmbH, Serbian Academy of Sciences and Arts
Journal
Small Science
ISSN
2688-4046
DOI
https://doi.org/10.1002/smsc.202400478
Publikationsdatum
2025
Peer-reviewed
Ja
ÖFOS 2012
103018 Materialphysik, 104011 Materialchemie, 104008 Katalyse
Schlagwörter
ASJC Scopus Sachgebiete
Catalysis, Chemical Engineering (miscellaneous), Materials Science (miscellaneous)
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/e4ad690a-5394-4bed-8736-5a450a84f218