Publikationen

Decoupled charge and heat transport in Fe<sub>2</sub>VAl composite thermoelectrics with topological-insulating grain boundary networks

Autor(en)
Fabian Garmroudi, Illia Serhiienko, Michael Parzer, Sanyukta Ghosh, Pawel Ziolkowski, Gregor Oppitz, Hieu Duy Nguyen, Cédric Bourgès, Yuya Hattori, Alexander Riss, Sebastian Steyrer, Gerda Rogl, Peter Rogl, Erhard Schafler, Naoyuki Kawamoto, Eckhard Müller, Ernst Bauer, Johannes de Boor, Takao Mori
Abstrakt

Decoupling charge and heat transport is essential for optimizing thermoelectric materials. Strategies to inhibit lattice-driven heat transport, however, also compromise carrier mobility, limiting the performance of most thermoelectrics, including Fe2VAl Heusler compounds. Here, we demonstrate an innovative approach, which bypasses this tradeoff: via liquid-phase sintering, we incorporate the archetypal topological insulator Bi1−xSbx between Fe2V0.95Ta0.1Al0.95 grains. Structural investigations alongside extensive thermoelectric and magneto-transport measurements reveal distinct modifications in the microstructure, a reduced lattice thermal conductivity and a simultaneously enhanced carrier mobility arising from topologically protected charge transport along the grain boundaries. This yields a huge performance boost, resulting in one of the highest figure of merits among both half- and full-Heusler compounds, z ≈ 1.6 × 10−3 K−1 (zT ≈ 0.5) at 295 K. Our findings highlight the potential of topological-insulating secondary phases to decouple charge and heat transport and call for more advanced theoretical studies of multiphase composites.

Organisation(en)
Institut für Materialchemie, Dynamik Kondensierter Systeme
Externe Organisation(en)
Technische Universität Wien, National Institute for Materials Science, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Justus-Liebig-Universität Gießen (JLU), Universität Duisburg-Essen, University of Tsukuba
Journal
Nature Communications
Band
16
ISSN
2041-1723
DOI
https://doi.org/10.1038/s41467-025-57250-6
Publikationsdatum
12-2025
Peer-reviewed
Ja
ÖFOS 2012
104017 Physikalische Chemie, 103006 Chemische Physik, 205019 Materialwissenschaften
ASJC Scopus Sachgebiete
Allgemeine Chemie, Allgemeine Biochemie, Genetik und Molekularbiologie, Allgemeine Physik und Astronomie
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/a8f7749b-43e6-4b91-8804-77a3630d7f80