Publications

Aerosol Jet Printing of Graphene and Carbon Nanotube Patterns on Realistically Rugged Substrates

Author(s)
Reinhard Kaindl, Tushar Gupta, Alexander Blümel, Songfeng Pei, Peng-Xiang Hou, Jinhong Du, Chang Liu, Paul Patter, Karl Popovic, David Dergez, Kenan Elibol, Erhard Schafler, Johan Liu, Dominik Eder, Dietmar Kieslinger, Wencai Ren, Paul Hartmann, Wolfgang Waldhauser, Bernhard C. Bayer
Abstract

Direct-write additive manufacturing of graphene and carbon nanotube (CNT) patterns by aerosol jet printing (AJP) is promising for the creation of thermal and electrical interconnects in (opto)electronics. In realistic application scenarios, this however often requires deposition of graphene and CNT patterns on rugged substrates such as, for example, roughly machined and surface oxidized metal block heat sinks. Most AJP of graphene/CNT patterns has thus far however concentrated on flat wafer-or foil type substrates. Here, we demonstrate AJP of graphene and single walled CNT (SWCNT) patterns on realistically rugged plasma electrolytic-oxidized (PEO) Al blocks, which are promising heat sink materials. We show that AJP on the rugged substrates offers line resolution of down to similar to 40 mu m width for single AJP passes, however, at the cost of noncomplete substrate coverage including noncovered mu m-sized pores in the PEO Al blocks. With multiple AJP passes, full coverage including coverage of the pores is, however, readily achieved. Comparing archetypical aqueous and organic graphene and SWCNT inks, we show that the choice of the ink system drastically influences the nanocarbon AJP parameter window, deposit microstructure including crystalline quality, compactness of deposit, and inter/intrapass layer adhesion for multiple passes. Simple electrical characterization indicates aqueous graphene inks as the most promising choice for AJP-deposited electrical interconnect applications. Our parameter space screening thereby forms a framework for rational process development for graphene and SWCNT AJP on application-relevant, rugged substrates.

Organisation(s)
Physics of Nanostructured Materials, Dynamics of Condensed Systems
External organisation(s)
Technische Universität Wien, Joanneum Research, Inst. for Information and Communication Technologies, Chinese Academy of Sciences (CAS), ZKW Elekt GmbH, Chalmers University of Technology
Journal
ACS Omega
Volume
6
Pages
34301-34313
No. of pages
13
ISSN
2470-1343
DOI
https://doi.org/10.1021/acsomega.1c03871
Publication date
12-2021
Peer reviewed
Yes
Austrian Fields of Science 2012
104011 Materials chemistry, 103018 Materials physics
Keywords
ASJC Scopus subject areas
Chemical Engineering(all), Chemistry(all)
Portal url
https://ucris.univie.ac.at/portal/en/publications/aerosol-jet-printing-of-graphene-and-carbon-nanotube-patterns-on-realistically-rugged-substrates(34d102a5-db52-4149-a382-fc653ca71ba4).html