FWF projects

FWF projects

WKP 161

Abstract

Using dance as medium for science communication has proven to be a great success:
For instance, the international competition Dance your Ph.D. supported by the Science Magazine, has established dance as a perfect tool to communicate science and, thus, has been able to generate a large (non)scientific audience over the years.
In accordance with the actual FWF-project Diffusion in Glasses studied with X-ray Photon Correlation Spectroscopy, dance should be used to communicate the physical topic concerning dynamics on a microscopic level. Using this kind of art form to describe physical properties of microscopic movement is enormously suitable.


By the aid of microscopic pictures, like interactions between particles, diffusive, jump-like, oscillating atomic motion, the breaking of atomic bonds, moving randomly or in correlated manner or the instantaneous or gradual emergence of ordered or disordered structures, incentives for the development of new improvisation topics and innovative aesthetics of movement could be created. The observations of dynamical processes on a microscopic length scale can be exemplary for complex systems and every-day appearances, e.g. the growth of an epidemic, the diffusion of language, the propagation of ideas, information or knowledge. On this basis, the developed choreography should eventually result in a series of performances for a diverse (non)scientific audience. It is the aim to create a strong public awareness with regards of the significance of dynamical processes in general and of the content of the FWF-project in particular.


To generate this widespread audience, a cooperation, with professional dancers together with the students of the Music and Arts University of the City of Vienna (MUK) will be carried out. The diverse venues of dance performances, e.g. the Uni Campus Wien, the MUK and the Werkstätten- und Kulturhaus Wien (WUK), should also attract the attention of a larger community.
To reach the younger generation, workshops for high school students will be additionally organized with the main focus on expressing the physical topic with dance (active participation of high school students) and with the aim of promoting and strengthening their interests in this scientific field in particular and in STEM-subjects in general. The close cooperation with the MUK University of the City of Vienna constitutes an important contribution of the development of this science communication project and should be seen as a starting point for further collaborations concerning the development of this art form as medium for science communication. Sustainability of this project is additionally guaranteed by continuous activities on social media platforms, by posting and promoting videos of the developed dance piece and by the submission of this science communication piece to various dance festivals.

For in-depth information about the project, please visit its respective page.

P28232-N36

Abstract

The movement of single atoms is a fundamental issue in materials science. The fabrication, specific properties and the stability of materials can be significantly improved with knowledge about atomic movement. Numerous properties of materials can be attributed to the single atom motion. Studies of diffusion mechanisms on the atomic scale are challenging despite a number of well-established methods which can be applied to experimentally investigate diffusion in solid state systems. Drawing conclusions from macroscopic measurements on the actual microscopic dynamics is a highly indirect procedure. Due to the relatively long timescales where atomic motion takes place, scattering techniques that rely on a high energy-resolution can only resolve fast processes. The greatest challenge is, however, that only a small number of selected isotopes are accessible to these methods which strongly limits their use. A new method not restricted to certain isotopes and capable of detecting slow diffusion is therefore required. As we have shown in our previous projects these requirements are met by atomic-scale X-ray photon correlation spectroscopy (aXPCS). Former grants served the implementation of XPCS as the preferred method for studying atomic dynamics mainly in crystalline phases. The current project is devoted to studying another very intriguing form of matter, namely the family of glasses. 

 

Glasses are an active and promising field of research. Understanding disordered solids on a fundamental level and particularly understanding ion conduction in these materials still presents a fundamental challenge. The random formation of structural networks is an important model for explaining the glass forming ability of many materials. The dynamics of basic network components play a key role in decoding puzzling properties of this form of matter like ionic dynamics. Considerable progress with solid-oxide fuel cells, batteries and supercapacitors, in electrochemical sensors and functional polymers has been achieved recently. Even so, the basic concept of ion transport in disordered materials remains poorly understood. This is due to the fact that there is no simple, widely accepted model of transport. Considering the current strong interest in the field and the plethora of experimental and theoretical works it is striking that, in contrast to transport properties in crystalline matter, there is no general consensus on several fundamental questions. It is our aim to shed light on the motion of ions on the atomic level in ionic conducting boron and silica glass and we are confident that the insights gained can be transferred to other ionic glasses.

In our project we will profit from the continuously increasing brilliance of existing synchrotron sources like the upgrade of the ESRF in Grenoble, which was just completed and from new sources like PETRA III in Hamburg.

For in-depth information about the project, please visit its respective page.

P22402-N20

Abstract

Understanding atomic motion in solids is a fundamental issue in synthesis and stability of technically important materials; this is even more critical in nanomaterials. The timescale of atomic motion is usually uncomfortably long for experimental techniques that rely on high energy resolution (e.g. inelastic neutron scattering or Mößbauer spectroscopy), forcing measurements at unduly high temperatures. Moreover, only a small number of selected isotopes are accessible to these methods. There exists, of course, plenty of information about atomic diffusion from tracer measurements. However, drawing conclusions from tracer measurements on the actual microscopic dynamics is a highly indirect procedure, often contradictory, and always based on assumptions. Hence, a nonresonant method not restricted to certain isotopes and capable of detecting slow diffusion is extremely desirable.

We have shown in our previous project the answer to these requirements: X-ray photon correlation spectroscopy (XPCS). This method monitors the temporal variations of the coherently scattered intensity as a function of the wavevector, that is, it measures dynamics directly in the Fourier domain. It has been applied since the emergence of high-energy synchrotron sources in the mid-90s for studies of slow dynamics on the nanometer scale, but had never been practiced before on single atoms. We have taken XPCS to its limits in terms of resolution by using it to reveal the slow atomic dynamics in a copper-gold alloy. The project at hand follows up on this success and establishes XPCS as the preferred method for studying atomic dynamics. Specifically, we have studied technically important high-temperature structural materials like Ni-Pt alloys, metallic glasses, and oxide glasses. These studies give a direct microscopic picture of the mechanisms leading to atomic transport, which can be very intricate in the case of ordered alloys. They also yield the temperature dependence of diffusion (i.e. the activation energy) in the low-temperature region.

In our project we profit from the continually increasing brilliance of existing synchrotron sources (cp. imminent upgrade of the ESRF in Grenoble) and from emerging new sources like PETRA III and the European XFEL in Hamburg.

For in-depth information about the project, please visit its respective page.

FFG projects

FFG projects

897801

Abstract

Due to its low density combined with good strength, high corrosion resistance and biocompatibility, titanium is a highly demanded raw material, particularly in the aerospace and medical technology sectors. Since titanium materials are usually used to manufacture high-quality components with complex shapes, a very large amount of waste is produced in the form of chips - often 80% of the starting material. Although the chips can be partially recycled by melting, the process is energy-intensive and is mostly carried out outside the EU. 

The aim of the DiRecT project is to make the recycling of titanium chips more sustainable by saving energy and shortening transportation routes, thus improving the entire value chain of high-quality titanium products. Therefore, various new technologies will be developed and evaluated. In addition to direct recycling of the chips into semi-finished products, from which various products can then be manufactured by conventional processing steps, possibilities for direct upcycling will also be developed. Thereby, either near-net-shape components will be produced directly from chips, which then require only minor machining to obtain the desired product, or the recycled semi-finished products will exhibit improved mechanical properties and are thus suitable for particularly high-quality products.

The novel technologies are (i) plasma metal deposition (PMD), a 3D printing process based on plasma welding, which will be develop to the point where chips can be processed directly instead of the usual starting materials (wire or powder), (ii) Severe Plastic Deformation (SPD), which is intended to consolidate the chips in a single step and refine the microstructure, thus improving the mechanical properties, and (iii) rapid hot pressing using Spark Plasma Sintering/Field Assisted Sintering (SPS/FAST), which will be further developed in terms of the starting material - from powder to chips.

The aim of the project consortium consisting of two Austrian SMEs, RHP-Technology GmbH and SBI GmbH, and the University of Vienna, Faculty of Physics as a scientific partner, is to be able to provide materials produced from chips at the end of the project that meet or exceed the requirements of the standards for titanium materials in terms of density, purity and mechanical properties. Evaluation of the energy balance and material yield of the various methods are other important aspects of the project. 

The innovative recycling and upcycling methods developed in the project will enable titanium processing companies to bring more environmentally sustainable products to market. The resource and energy savings and avoidance of long transportation routes make a general contribution to sustainable production and circular economy and have a positive impact on the environment and climate.

For in-depth information about the project, please visit its respective page.

914968

Zusammenfassung

Erneuerbare Energiequellen sind oft nur bedingt regelbar, wie z.B. Photovoltaik oder Windkraft. Dabei kommt es einerseits zu kurzfristigen Schwankungen auf Grund der aktuellen Wetterlage und Tageszeit, aber auch zu saisonalen Schwankungen, insbesondere bei Solarenergie. Um eine stabile Energieversorgung zu gewährleisten, sind effiziente Speicher daher essenziell. Kurzfristige Schwankungen können durch Batteriesysteme und eine intelligente Steuerung von Verbrauchern ausgeglichen werden. Bei Langzeitspeichern sind neben Effizienz und Wirkungsgrad auch volumetrische Speicherdichte (somit also der Platzbedarf), Stabilität und Sicherheit wichtige Themen.

In diesem Zusammenhang ist Wasserstoff ein höchst interessanter Energieträger. Wasserstoff kann mittels Elektrolyse aus elektrischer Energie und Wasser gewonnen und zu einem späteren Zeitpunkt verwendet werden, was ihn in Zukunft zu einem unersetzlichen und universellen Energieträger und Rohstoff machen wird. Hierbei ist die effiziente Speicherung von Wasserstoff ein zentraler Bestandteil, entsprechend ist die Speicherung auch in der österreichischen und
europäischen Wasserstoffstrategie inkludiert. Wasserstoffgas hat jedoch eine niedrige volumen-bezogene Speicherdichte und für die lokale Speicherung von geringer und mittlerer Kapazität benötigt man häufig hohe Drucke oder kryogene Temperaturen. Diese Speicher sind relevant für ein effizientes Energiesystem, welches mit einer großen Zahl wetterabhängiger Energiequellen auskommen muss. Angesichts stark steigender Kosten zur Stabilisierung des Stromnetzes (2023: 150 Mio € Redispatch-Kosten im Vergleich zu 5 Mio € vor 10 Jahren) sind hier langfristig signifikante Innovationssprünge vonnöten.

Ein solcher Innovationssprung wäre die reversible Speicherung in Form von festen Metallhydriden, also Verbindungen zwischen einem Metall und Wasserstoff. Diese Speicher haben eine extrem hohe volumen-bezogene Speicherdichte. Hydridbildende Metalle oder Legierungen, die sich als Speicher eignen, sollen aber neben einer möglichst hohen Kapazität auch eine schnelle Be- und Entladung mit Wasserstoff nahe Raumtemperatur und bei niedrigen Gasdrucken ermöglichen.

Neuartige Multikomponentenlegierungen, sogenannte „Hochentropielegierungen“ oder „High Entropy Alloys (HEAs)“ weisen sehr attraktive Wasserstoff-Sorptionseigenschaften und eine hohe Speicherkapazität auf, und erlauben durch ihre vielseitige Chemie eine präzise Einstellung des Absorptionsverhaltens. Die Beladeeigenschaften (Aktivierung, Stabilität) müssen jedoch noch verbessert werden, um ein effizientes Speichermaterial zu erhalten. Denn viele Metallhydride haben den Nachteil, dass eine aufwändige Aktivierung notwendig ist. Das aktivierte Material ist oft empfindlich gegenüber Verunreinigungen, wie z.B. Sauerstoff, und pulverisiert durch das Be- und Entladen, was zu Problemen mit Ventilen, Wärmeübertragung und Gasdurchlässigkeit führt.

Aktuelle Ergebnisse an nanoporösen Metallhydriden in einem Grundlagenprojekt der Montanuniversität Leoben (“Strategic Core Research Area SCoRe A+ Hydrogen and Carbon”) zeigen einen höchst vielversprechenden Weg, diese Nachteile zu beseitigen. Hierbei wird die Speicherlegierung gemeinsam mit einer zweiten Phase, der sogenannten „Opferphase“, durch Hochdrucktorsion hochverformt. Durch Herauslösen der Opferphase kann schlussendlich ein homogener Metallschaum im Labormaßstab hergestellt werden. Die große Oberfläche sowie durch die Hochverformung generierte Gitterdefekte führen zu einer raschen Be- und Entladung ohne Aktivierung und zu einer hohen Verunreinigungsresistenz, welche essentielle Voraussetzungen für die kommerzielle Anwendung darstellen.

Im geplanten Projekt soll daher mit Unterstützung durch die Förderung diese sehr grundlegende Route (TRL 2) für industrielle Anwendungen nutzbar gemacht werden. Die Motivation des Projektkonsortiums liegt dabei primär im Aufbau von Know-How und der gemeinsamen Verwertung der gewonnenen IPs. Aber auch für die akademischen Projektpartner wichtige Punkte wie internationale Sichtbarkeit durch wissenschaftliche Publikationen und die forschungsgeleitete Lehre zu gesellschaftlich wichtigen Themen sind integrale Bestandteile des Projekts.

Das Projekt leistet einen Betrag zur Technologieführerschaft in der Wasserstoffspeicherung und -infrastruktur und damit starken Wachstumsmärkten, und greift auf die starken akademischen und industriellen Kompetenzen im Bereich der Materialwissenschaft in Österreich zurück.

For in-depth information about the project, please visit its respective page.