

Study of atomic motion in rubidium borate glasses

C. Tietz^{*1}, K. Holzweber¹, M. Ross¹, M. Stana¹ and B. Sepiol¹

¹Universität Wien, Fakultät für Physik, Boltzmanngasse 5, 1090 Wien, Austria *christoph.tietz@univie.ac.at

Introduction

Atomic Scale X-ray Photon Correlation Spectroscopy (aXPCS) uses coherent X-rays to probe the dynamics of materials on an atomic scale. It was applied to study atomic diffusion in crystals [1], but its ap-

plication was recently extended to glasses as well [2]. Results of dynamics and structural studies studies on high- and low-alkali content rubidium borate glasses are presented here. Structural studies include

total scattering experiments yielding the pair distribution function alongside Small-Angle X-ray Scattering (SAXS) studies giving information about inhomogeneities in the samples.

Theory

Real space structure: changes in time results in different scattering patterns

Sequence of scattering patterns \rightarrow Time correlation

Functional form of the ACF:

 $g^{(2)}(q) = 1 + \beta e^{-\left(\frac{2\Delta t}{\tau}\right)^{\alpha}}$

Space and time dependence described by the Van Hove **Pair Correlation Function**

Intensity Auto Correlation Function (ACF) $g^{(2)}(\vec{q}, \Delta t) := \frac{\langle I(\vec{q}, t)I(\vec{q}, t + \Delta t) \rangle}{\langle I(\vec{q}, t)I(\vec{q}, t + \Delta t) \rangle}$ $\langle I(\vec{q},t) \rangle^2$

Structure

Scattering function in general includes both Bragg and diffuse scattering \rightarrow for amorphous substances only diffuse scattering occurs.

Pair distribution function (PDF) is the probability of finding two atoms separated by a distance r.

Connection of the PDF G(r) to the measured scat-

Total structure factor and pair distribution function

tered intensity S(Q) via Fourier sine transform

$$G(r) = \frac{2}{\pi} \int_0^\infty dQ Q(S(Q) - 1) sin(Qr)$$

The scattered intensity is related to the total (static) structure factor by

 $I(q) = N \left[E \langle f^2 \rangle - E \langle f \rangle^2 + E \langle f \rangle^2 S_{total}(q) \right]$

Total structure factor as a function of momentum trans-Pair distribution function as a function of radial distance

- Measured as platelets in transmission geometry \rightarrow only weak contribution from surface \rightarrow smooth curves
- Shows features up to high momentum transfers $q \rightarrow$ distinguished from most glasses with liquid-like structure factors
- Very sharp peaks at small distances 1.4 and 2.4 Å \rightarrow corresponding to rigid borate network \rightarrow alkali ions are the diffusing species
- Well-defined short-range order resulting from strong covalent bonding

fer

SAXS

q [Å⁻¹]

top: low alkali content glass, **bottom**: High alkali content glass. Several models can be fitted at small *q*-range. Fits are equally good in the hydrodynamic limit.

- Inhomogeneities on a length scale > 60 nm are visible
- Only Porod region visible \rightarrow Inhomogeneities too large for

SAXS

• Slope of -3.5 indicating 3D inhomogeneities with smooth interfaces

Conclusion

- Diffusion in low rubidium content borate glasses best described by two-jump model
- Large difference in diffusivity between low and high alkali glass • Diffusion at 20K still too fast to be measured in high alkali glass • Inhomogenities are much larger in high alkali sample

[1] M. Leitner, B. Sepiol, L. M. Stadler, S. Pfau and G. Vogl, Nat. Mater, 8 (2009), 717. [2] M. Ross, M. Stana, M. Leitner and B. Sepiol, New J. Phys. 16 (2014), 093042. [3] P. Juhás, T. Davis, C. L. Farrow and S. J. L. Billinge, J. Appl. Crystallogr. 46 (2013), 560-566. [4] W. Humphrey, A. Dalke and K. Schulten, J Mol Graph. 14(1) (1996), 33-38.

This work was funded by the FWF (Austrian Science Fund), Project P-28232.

