

Studies of atomic scale diffusion by x-ray photon correlation spectroscopy

<u>M. Stana^{*1}</u>, M. Leitner^{1,2}, M. Ross¹ and B. Sepiol¹

¹Universität Wien, Fakultät für Physik, Strudlhofgasse 4, 1090 Wien, Austria ²Technische Universität München, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), 85747 Garching, Germany * markus.stana@univie.ac.at

1 Introduction

This poster gives an overview of the relatively new technique of **a**tomic scale **X**-ray **P**hoton **C**orrelation **S**pectroscopy (aXPCS), which uses the time evolution of speckle patterns in the diffuse intensity regime to

reveal diffusion mechanisms in real space. This is done via the so called **intensity autocorrelation function**.

The advantages of this new technique are its **sensi-**

tivity to jump mechanisms, its applicability at very low temperatures, i.e. for very low diffusion rates and for a broad variety of systems (not element specific).

2 Experiment and theoretical background

Different real space configurations yield different intensities in the diffuse regime (here in (100) plane):

In the experiment a CCD camera collects a series of images from a detail of reciprocal space corresponding to a certain \vec{q} and for a certain T:

Variable parameters in the experiment:

• temperature *T*

• sample orientation relative to \hat{k}_{in} • exposure time \rightarrow frame rate

CCD images for different t at particular \vec{q} are used to calculate the Intensity Autocorrelation function:

3 Finding a diffusion model

General form of correlation time $\tau(\vec{q})$:

1 0 0 jumps:

1 1 0 jumps:

$$\tau(\vec{q}) = \tau_0 \frac{I_{\text{SRO}}(\vec{q})}{\sum_n P_n \sum_{\Delta \vec{a}_{nj}} \left(1 - \exp\left(i\vec{q} \cdot \Delta \vec{a}_{nj}\right)\right)}$$
(2)

This can be calculated for a particular system and certain parameters:

- short-range order intensity I_{SRO}
- neighbors for certain lattice type $\Delta \vec{a}_n$
- lattice constant d
- crystal orientation

Notice: the sample to detector distance is only a scaling factor.

An example of inverse correlation times $1/\tau(\vec{q})$ in a bcc system oriented with $\hat{k}_{in} \parallel \langle 110 \rangle$ and with $I_{SRO} = 1$ for different jump vectors is given to the right:

4 Some results

ラララ Jump

In the first example of Ni₉₇Pt₃ one can see that

Ni₉₇Pt₃ solid solution^[1] single crystalline (sc) and polycrystalline (pc) sample measured at different temperatures compared with tracer measurements^[2] (black circles):

[1] M. Stana, M. Leitner, M. Ross, and B. Sepiol, J. Phys.: Condens. Matter 25 (2013) 065401.
[2] M. S. A. Karunaratne and R. C. Reed. Acta mater., 51(10) (2003) 2905-2919.

Fe₅₅Al₄₅ binary intermetallic alloy^[3] compared with diffusion models with $I_{SRO}(\vec{q}) = 1$:

^[3] Data measured at PETRA III at E = 7 keV, $2\Theta = 20^{\circ}$ and T = 653 K (preliminary results).

aXPCS measurements agree well with tracer measurements. The advantage of aXPCS measurements here is the possibility to measure at very low diffusion rates corresponding to very low temperatures. The other big advantage, as can be seen in the example of Fe₅₅Al₄₅, is the possibility to identify diffusion mechanisms. In this case, even tough the inclusion of $I_{SRO}(\vec{q}) \neq 1$ could still change this picture, the 111 jump mechanism seems dominant.

Acknowledgements

We thank Y. Chushkin and the whole team of beamline ID10A at the ESRF in Grenoble and M. Sprung and the team of beamline P10 at PETRA III in Hamburg.

This research was funded by the Austrian Science Fund (FWF) contract P-22402.

Der Wissenschaftsfonds.