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1 Theoretical background

Solving the rate equation for discrete atomic
jumps on a Bravais lattice yields a correlation
time τ(�q):

τ(�q) = τ0
SRO(�q)�

npn
�

Δ�rnj

�
1−exp
�
i�q ·Δ�rnj
�� (1)

n ... number of neighboring shell

pn ... jump probability to certain position in nth shell

Δ�rnj ... relative jump vector to jth position in nth shell

�q ... scattering vector

SRO ... short-range order intensity in Laue units

For a coherent method
like XPCS short-range or-
der plays a role, hence
the SRO in Eq. (1).

Δ�rnj depends on lattice constant d and the sym-
metry of lattice. �q depends on the parameters
described below. For a certain choice of such pa-
rameters an inverse correlation time 1/τ(�q) can
be calculated (here bcc).

1/τ(�q) (∝ Hz)

Images on the right show different jump mech-
anisms without SRO-correction (1/τinc) (top) and
corrected with SRO shown above (bottom).
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2 Experiment

A CCD camera is used to collect a series of
images from a detail of reciprocal space corre-
sponding to a certain �q and for a certain T:

�q= �kout− �kin

Variable parameters in the experiment:

• scattering vector �q





scattering angle 2Θ
azimuthal angle φ
| �kin|= | �kout|∝ Ephoton

• temperature T
• sample orientation relative to k̂in
• exposure time → frame rate

Different atomic configurations in real space yield
different intensities in the diffuse regime (here in
(100) plane):

intensity

time

=1 2 3 4 5 6 7

CCD images for different t at particular �q are used to
calculate the Intensity Autocorrelation function:

g(2)(�q,Δt) =
〈(�q,t)(�q,t+Δt)〉
〈(�q,t)〉2 = 1+βexp
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3 Results for Fe55Al45

Projection of model for
1
2
1
2
1
2 - jumps. Models from

section 1 (SRO(�q) = 1)
compared with φ-scan at
2θ=20◦ for Fe55Al45 bi-
nary intermetallic alloy[1]:

[1] Data measured at PETRA III at E = 7 keV, 2Θ =20◦ and T = 653 K

(preliminary results).
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Without SRO - correction 111 jumps appear to be the
dominating process.

Arrhenius plot of aXPCS data in comparison to litera-
ture values acquired by different techniques:
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Fe52Al48 measured with tracer diffusion technique (59Fe) [2]

Fe50.5Al49.5 measured with QMS [3]

Fe55Al45 measured with QMS [4]

Fe55Al45 measured with aXPCS [5]
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As atomic-scale X-ray Photon Correlation Spec-
troscopy (aXPCS) is a coherent method, it re-
quires information about short-range order in
the system. Reliable SRO measurements are
therefore essential for data evaluation.
aXPCS is a valuable tool to determine atomic
diffusion mechanisms. It is applicable over a
wide range of temperatures being only limited
by CCD-readout times and intensity towards
fast processes and by setup and system sta-
bility towards slow processes. This allows for
investigations at relatively low temperatures
that were unaccessible to any other atomistic
method so far. Furthermore there is no limita-
tion to special isotopes.
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