Languages are an important part of our culturally diverse world, yet many of today’s languages are being used less and less. To find out why, one needs to first understand the dynamics behind this language shift.

Motivation

Languages are an important part of our culturally diverse world, yet many of today’s languages are being used less and less. To find out why, one needs to first understand the dynamics behind this language shift. Despite supportive measures, language shift (speakers stopping the use of one language for another) is taking place.

One way of monitoring this language shift on a large scale is using methods from the natural sciences where dealing with big sets of data is common.

In both Austria and Hungary (the former Austro-Hungarian Empire), use of minority languages has been declining over the past century. Despite supportive measures, language shift (speakers stopping the use of one language for another) is taking place.

The idea: Use physical methods to study language shift

Our model: a microscopic approach

To get the number of speakers of a language α in the next year, each grid cell is updated according to the mathematical rule:

\[
 n_{\alpha}(r,t+1) = n_{\text{total}}(r,t+1) \cdot \left(n_{1}(r,t) + F_{\alpha}(r,t) \right)
\]

(1)

This means: the number of speakers in the next year is proportional to:

- the number of current speakers and
- the interaction with speakers in other places

The data

The census was the primary method for collecting data on languages spoken in Austria and Hungary. Data was collected roughly every ten years between 1880 and 2001 (Austria) and between 1881 and 2011 (Hungary).

The area is divided into grid cells.

Digitising the census data

The area is divided into grid cells. The census was the primary method for collecting data on languages spoken in Austria and Hungary. Data was collected roughly every ten years between 1880 and 2001 (Austria) and between 1881 and 2011 (Hungary).

Each village is assigned to a grid cell based on its geographic coordinates and speaker numbers from the census are attributed to the grid cells.

The area is divided into grid cells.

Application of the model to different situations

Slovenian in Austria

- The contiguous Slovenian language area is shrinking from one side.
- The language shift from Slovenian to German can be successfully modelled based on principles of physical diffusion.
- Interaction with other speakers of the same language is the most important driving factor for language shift. External factors such as school or parish language seem to have only a minor influence.

German in Hungary

- Dispersed patches of German “language islands” which are separated by larger geographical distances and mostly do not directly interact.
- The model needs to be adapted to describe the language shift from German to Hungarian.
- Forced assimilation to the Hungarian language through the government (magyarisation) is the most important driving factor for language shift. The language shift process can be seen as shrinking of clusters with only little diffusion between the islands.

Summary

- We have successfully modelled language shift based on principles of physical diffusion.
- All model parameters can be calculated directly from the census data: our model is applicable even in situations where data on other factors influencing language use (e.g., status of a language) is either not available or impossible to obtain.
- Every language shift situation is different and the model must be adapted to take into account, e.g., political decisions which cannot be described as diffusion processes.

http://dcs.univie.ac.at/languagediffusion