Study of atomic motion in rubidium borate glasses

C. Tietz1, K. Holzweber2, M. Ross3, M. Stana1 and B. Sepiol1

1Universität Wien, Fakultät für Physik, Boltzmanngasse 5, 1090 Wien, Austria
2christoph.tietz@univie.ac.at

Introduction
Atomic Scale X-ray Photon Correlation Spectroscopy (aXPCS) uses coherent X-rays to probe the dynamics of materials on an atomic scale. It was applied to study atomic diffusion in crystals [1], but its application was recently extended to glasses as well [2]. Results of dynamics and structural studies studies on high- and low-alkali content rubidium borate glasses are presented here. Structural studies include total scattering experiments, yielding the pair distribution function alongside Small-Angle X-ray Scattering (SAXS) studies giving information about inhomogeneities in the samples.

Theory
Real space structure: changes in time results in different scattering patterns
Space and time dependence described by the Van Hove Pair Correlation Function

\[g^{(2)}(q,\Delta t) = \frac{\langle f(q, t) f(q, t + \Delta t) \rangle}{\langle f(q, t) \rangle^2} \]

Intensity Auto Correlation Function (ACF)

\[\tau^{coh}(q) = \frac{1}{\langle f^2(q, t) \rangle} \]

Structure
Scattering function in general includes both Bragg and diffuse scattering → for amorphous substances only diffuse scattering occurs.
Pair distribution function (PDF) is the probability of finding two atoms separated by a distance \(r \).
Connection of the PDF \(G(r) \) to the measured scattered intensity \(S(Q) \) via Fourier sine transform

\[G(r) = 2 \sum_{m=0}^{\infty} \int_0^{\infty} dQ \mathcal{O}(S(Q)-1) \sin(qr) \]

The scattered intensity is related to the total (static) structure factor by

\[I(q) = N \left[\langle f^2(q) \rangle - \langle f(q) \rangle^2 + \langle f(q) \rangle^2 \sin^2(qr) \right] \]

Total structure factor and pair distribution function

\[\tau_{coh}(q) = \frac{1}{\langle f^2(q, t) \rangle} \]

Pair distribution function as a function of radial distance

\[g^{(2)}(q) = 1 + \beta e^{-\chi(q)} \]

SAXS

SAXS intensities as a function of momentum transfer

\[\sigma_{\text{SAXS}}(q) \]

Conclusion

- Diffusion in low rubidium content borate glasses best described by two-jump model
- Large difference in diffusivity between low and high alkali glass
- Diffusion at 20K still too fast to be measured in high alkali glass
- Large difference in diffusivity between low and high alkali glass
- Inhomogeneities are much larger in high alkali sample
- Inhomogeneities in the samples.