The ordering of dodecyl chains and their influence on the agglomeration of zirconia nanoparticles

S. Pabisch(1,2), B. Feichtenschlager(1), G. Kickelbick(1,2), H. Peterlik(1)
(1) University of Vienna, Austria; (2) Vienna University of Technology, (3) Saarland University

Introduction

The ordering of dodecyl chains has been investigated in mixed monolayers of phosphonic acid capping agents on the surface of hydrothermal prepared zirconia nanocrystals. As co-capping agent for the mixed monolayer formation, methyl-, phenyl-, pyryl- and tert-butyl phosphonic acid have been used to investigate series with different mixing ratios with dodecyl phosphonic acid. Here, the influence of the various molecules on the alkyl chain disordering is discussed. Small angle X-ray scattering (SAXS) studies show that with increasing amount of co-capping agent the agglomeration of the particles decreases. This behavior correlates with the ordering of the surface bond alkyl chains investigated by Fourier transform infrared spectroscopy (FTIR). This allows the conclusion that interparticle bilayers, formed via long alkyl chain packing, are responsible for the formation of dense particle agglomerates and can be controlled on a molecular level by co-adsorbing various molecules. [1]

Material

ZrO₂ nanoparticles
- crystalline, monoclinic
- hydrothermally synthesized

Capping agents:
- Anchor group (AG) has to be tailored
- Spacer can be varied in its chemical behavior and length
- Mechanism of attachment (FG) to a polymer matrix can be controlled

Commonly used: Alkyl-Chain-moieties

Commonly used: Alkyl-Chain-moieties

Problem:
Formation of self-assembled monolayers (SAM) using long alkyl chains
→ bilayer formation between two particles
→ creation of thermodynamic very stable agglomerates [2]

Solution:
Tuning of alkyl chain ordering via mixed monolayer formation

Small-angle X-ray scattering - Theory

Unified equation for the scattering intensity by Beaucage [3] describing two functions – Guinier’s law and a structurally limited power law

\[I(q) = \frac{\eta}{q^2} \exp \left(- \frac{1}{3} \eta q^2 \right) \]

\[I(q) = \eta \frac{1}{q^2} \exp \left(- \frac{1}{3} \eta q^2 \right) \]

\[S(q) = \exp \left(- \frac{q^2 R_g^2}{3} \right) \]

\[I(q) = \eta \frac{1}{q^2} \exp \left(- \frac{1}{3} \eta q^2 \right) \]

\[\eta \text{ ... Hard-sphere volume fraction: Probability to find neighbouring particles} \]

\[\eta \text{ ... the higher the agglomeration of nanoparticles} \]

RESULTS

FT-IR

Ordering of alkyl chains disturbed by
- Phenyl-PPA
- Methyl-PPA
- Pyryl-PPA
- tBu-PPA

Disorder of alkyl chains → observed by typical shift of the methylene C-H vibration of the C12 chain to higher wavenumbers

SAXS

Disorder of alkyl chains → observed by decreasing agglomeration of nanoparticles

Correlation

FT-IR studies: disordering of dodecyl chains

SAXS studies: agglomeration of nanoparticles

Summary

- Self-assembled monolayers (SAM) on nanoparticles with alkyl chains
- Controlled tuning of order/disorder
- Correlation of spectroscopical method (FT-IR) and structural method (SAXS):

→ Nanoparticles as probes for SAM-investigation with SAXS

References: