Ab initio calculation of variable saddle point energies for atom jumps in L1_2 ordered Ni_3Al

- M. Leitner, D. Vogtenhuber, R. Podloucky, W. Pfeifer, and W. Puschl
- University of Vienna, Department of Physical Chemistry
- University of Vienna, Department Dynamics of Condensed Systems
- University of Vienna, Department of Computational Materials Science

Monte-Carlo simulation: How sensitive is saddle point energy to atomic environment?

The 4-atom window and the single atom jump

Geometric relations in the L1_2 structure:

- L1_2 structure
- Window configuration
- 4-atom window

The single atom jump:

- Vacancy mechanism
- Main stages of the jump: 1. Initial equilibrium position. 2. Saddle point state. 3. Final equilibrium position.
- Transition state theory: \(\Gamma_1 = \Gamma_3 \exp \left(\frac{A}{RT} \right) \)

Results for \(E_{\text{diff}} \):

- \(E_{\text{diff}} \) in eV
- \(\frac{\Delta E_{\text{diff}}}{\Delta F_{\text{diff}}} \)

The importance of the 4-atom window:

Variation of distance of one antiflu to jumping atom

Classification and results

Classification

Jump types

Window types

Results for \(E_{\text{diff}} \):

Barrier height [eV]

Left

Right

Classification

Jump types

Window types

Comparison of 3x3x3 and 2x2x2 supercells

Details of VASP calculations

- GGA (PW91), ECVT 50-AV
- 2x2x2 and 3x3x3 supercells (6x6x6 and 4x4x4 k points, respectively)
- NEB (Nudged-elastic band) method was used where necessary
- atoms located on the surface of the supercell are fixed

Long range order parameter

\(q(t) = 4 \exp \left(-\frac{t}{\tau_2} \right) + [1 - 4 \exp \left(-\frac{t}{\tau_1} \right)] < \)

with \(0 \leq A = t / \tau_2 < t_1 \)

Jump statistics

Window statistics

Saddle point energies are very sensitive to atomic environment!

Acknowledgements:
Work supported by FWF, project nr. P19548 and F4110